The Intel® Edge Software Device Qualification is a Command Line Interface (CLI) tool that enables customers to test and qualify their platform for a specific Intel® Edge Software package.
| Package Name | esdq |
| Package Version | 11.1.0 |
| Package CLI Version | 11.1.0 |
| Module Name | Metro Device Qualification Test |
| Module Version | 2.0 |
| Total Test Cases | 8 |
| Total Test Cases Passed | 8 |
| Total Test Cases Failed | 0 |
| Total Test Cases with Unknown Result | 0 |
| Pass Percentage (%) | 100.00 |
| Verdict | PASSED |
| Category | Name | Version | Status |
|---|---|---|---|
| generic | Docker CE | 28.4.0 | Installed |
| Docker Images | metro2.0/media_performance_benchmark_runner | 2.0 | Installed |
| Docker Images | metro2.0/ai_frequency_measure_runner | 2.0 | Installed |
| Docker Images | metro2.0/proxy_pipeline_benchmark_runner | 2.0 | Installed |
| Docker Images | metro2.0/openvino_benchmark_runner | 2.0 | Installed |
| Docker Images | metro2.0/stream_memory_benchmark | 2.0 | Installed |
| Section | Field | Value |
|---|---|---|
| HARDWARE INFO | Device Manufacturer | O.E.M. |
| HARDWARE INFO | Hardware Architecture | x86_64 |
| HARDWARE INFO | Processor | Intel(R) Core(TM) Ultra 7 155U |
| HARDWARE INFO | GPU PCI ID | 7d45 (Intel® Graphics) |
| HARDWARE INFO | GPU Memory Size | 16M (Intel® Graphics) |
| HARDWARE INFO | GPU Memory Size | 256M (Intel® Graphics) |
| HARDWARE INFO | Memory Size | 30Gi |
| HARDWARE INFO | Monitor | Monitors: 1 |
| HARDWARE INFO | Monitor | 0: +*DP-1 1920/480x1080/270+0+0 DP-1 |
| HDD Configurations | Model | TS1TSSD4 72K-I (scsi) |
| HDD Configurations | Disk /dev/sda | 1024GB |
| HDD Configurations | Sector size (logical/physical) | 512B/512B |
| HDD Configurations | Partition Table | gpt |
| HDD Configurations | Disk Flags | Number Start End Size File system Name Flags |
| HDD Configurations | Disk Flags | 1 1049kB 1128MB 1127MB fat32 boot, esp |
| HDD Configurations | Disk Flags | 2 1128MB 1024GB 1023GB ext4 |
| Section | Field | Value |
|---|---|---|
| SOFTWARE INFO | OS Version | Ubuntu 24.04.2 LTS |
| SOFTWARE INFO | Kernel Version | 6.14.0-29-generic |
| SOFTWARE INFO | OpenVINO Version (Base) | 2025.2.0 |
| SOFTWARE INFO | OpenVINO Version (for DLStreamer) | 2025.2.0 |
| SOFTWARE INFO | OpenVINO Version (for OpenCV/FFMpeg) | 2025.2.0 |
| SOFTWARE INFO | Docker CE Version | 28.4.0 |
| SOFTWARE INFO | Docker Compose Version | 2.39.2 |
| SOFTWARE INFO | Intel Level Zero for GPU | NA |
| SOFTWARE INFO | Intel Graphics Compiler for OpenCL | 25.05.32567.19-1099 |
| SOFTWARE INFO | Libva / VAAPI Driver | NA |
| SOFTWARE INFO | Media-driver Version | 25.2.4-1146~24.04 |
| SOFTWARE INFO | Intel OneVPL | 1:2.15.0.0-1140 |
| SOFTWARE INFO | Mesa | NA |
| SOFTWARE INFO | OpenCV Version | 4.11.0.86 |
| SOFTWARE INFO | DLStreamer Version | 1.26.4 |
| SOFTWARE INFO | FFmpeg Version | 6.1.1-3ubuntu5 |
| SOFTWARE INFO | NPU Version | 1.19.0.20250707-16111289554 |
| SOFTWARE INFO | Current System Time | 2025-10-29 01:45:41 |
| Category | Name | Value Type | Logic Type | Expected Value | Value | Parameters | Status | |||
|---|---|---|---|---|---|---|---|---|---|---|
| generic | OpenVINO Benchmark Test | text | eq | No Error | No Error | na | PASSED | |||
| generic | Memory Benchmark Test | text | eq | No Error | No Error | na | PASSED | |||
| generic | Media Performance Test | text | eq | No Error | No Error | na | PASSED | |||
| generic | GPU Freq Performance Test | text | eq | No Error | No Error | na | PASSED | |||
| generic | Smart NVR Proxy Pipeline Benchmark Test | text | eq | No Error | No Error | na | PASSED | |||
| generic | Headed Visual AI Proxy Pipeline Benchmark Test | text | eq | No Error | No Error | na | PASSED | |||
| generic | VSaaS Gateway with Storage Proxy Pipeline Benchmark Test | text | eq | No Error | No Error | na | PASSED | |||
| generic | License Plate Recognition(LPR) AI Proxy Pipeline Benchmark | text | eq | No Error | No Error | na | PASSED | |||
| Model | Precision | Device | Throughput (fps) |
Latency (ms) |
Reference Platform | Reference Throughput (fps) | Reference GPU Freq (GHz) | CPU Avg Freq (GHz) |
CPU Util (norm) (%) |
Memory Util (%) |
GPU Freq (GHz) |
GPU EU Util (%) |
GPU VDBox Util (%) |
GPU Power Util (W) |
Package Power (W) |
Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| resnet-50-tf | INT8 | GPU.0 | 427.85 | 597.22 | MTL 165H (32G Mem) | 675.8 | 0.9 | 1.38 | 9.02 | 2.52 | 0.69 | 86.01 | 0.0 | 6.85 | 14.94 | No Error |
| resnet-50-tf | INT8 | NPU | 652.50 | 6.06 | MTL 165H (32G Mem) | 717.62 | 1.02 | 1.77 | 1.48 | 1.04 | 14.71 | No Error |
| Model | Precision | Device | Throughput (fps) |
Latency (ms) |
Reference Platform | Reference Throughput (fps) | Reference GPU Freq (GHz) | CPU Avg Freq (GHz) |
CPU Util (norm) (%) |
Memory Util (%) |
GPU Freq (GHz) |
GPU EU Util (%) |
GPU VDBox Util (%) |
GPU Power Util (W) |
Package Power (W) |
Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| efficientnet-b0 | INT8 | GPU.0 | 727.40 | 175.77 | MTL 165H (32G Mem) | 1253.92 | 0.17 | 1.56 | 11.64 | 3.05 | 0.71 | 85.26 | 0.0 | 4.72 | 14.97 | No Error |
| efficientnet-b0 | INT8 | NPU | 476.03 | 8.33 | MTL 165H (32G Mem) | 485.84 | 1.23 | 1.62 | 1.09 | 0.84 | 11.48 | No Error |
| Model | Precision | Device | Throughput (fps) |
Latency (ms) |
Reference Platform | Reference Throughput (fps) | Reference GPU Freq (GHz) | CPU Avg Freq (GHz) |
CPU Util (norm) (%) |
Memory Util (%) |
GPU Freq (GHz) |
GPU EU Util (%) |
GPU VDBox Util (%) |
GPU Power Util (W) |
Package Power (W) |
Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ssdlite_mobilenet_v2 | INT8 | GPU.0 | 489.70 | 8.09 | MTL 165H (32G Mem) | 480.35 | 0.9 | 1.58 | 17.27 | 1.75 | 0.62 | 94.39 | 0.0 | 3.78 | 15.68 | No Error |
| ssdlite_mobilenet_v2 | INT8 | NPU | 796.70 | 4.96 | MTL 165H (32G Mem) | 817.27 | 0.96 | 1.69 | 1.43 | 0.82 | 13.0 | No Error |
| Model | Precision | Device | Throughput (fps) |
Latency (ms) |
Reference Platform | Reference Throughput (fps) | Reference GPU Freq (GHz) | CPU Avg Freq (GHz) |
CPU Util (norm) (%) |
Memory Util (%) |
GPU Freq (GHz) |
GPU EU Util (%) |
GPU VDBox Util (%) |
GPU Power Util (W) |
Package Power (W) |
Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| mobilenet-v2-pytorch | INT8 | GPU.0 | 1710.73 | 74.06 | MTL 165H (32G Mem) | 3102.01 | 0.9 | 1.52 | 13.54 | 2.27 | 0.59 | 86.32 | 0.0 | 4.3 | 15.19 | No Error |
| mobilenet-v2-pytorch | INT8 | NPU | 1965.83 | 1.98 | MTL 165H (32G Mem) | 2007.79 | 0.96 | 1.95 | 1.96 | 0.79 | 15.16 | No Error |
| Model | Precision | Device | Throughput (fps) |
Latency (ms) |
Reference Platform | Reference Throughput (fps) | Reference GPU Freq (GHz) | CPU Avg Freq (GHz) |
CPU Util (norm) (%) |
Memory Util (%) |
GPU Freq (GHz) |
GPU EU Util (%) |
GPU VDBox Util (%) |
GPU Power Util (W) |
Package Power (W) |
Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| yolo-v5s | INT8 | GPU.0 | 169.23 | 377.67 | MTL 165H (32G Mem) | 285.99 | 0.88 | 1.14 | 9.42 | 2.3 | 0.65 | 83.92 | 0.0 | 6.2 | 14.87 | No Error |
| yolo-v5s | INT8 | NPU | 114.19 | 34.94 | MTL 165H (32G Mem) | 111.83 | 0.79 | 1.34 | 0.41 | 0.87 | 10.77 | No Error |
| Model | Precision | Device | Throughput (fps) |
Latency (ms) |
Reference Platform | Reference Throughput (fps) | Reference GPU Freq (GHz) | CPU Avg Freq (GHz) |
CPU Util (norm) (%) |
Memory Util (%) |
GPU Freq (GHz) |
GPU EU Util (%) |
GPU VDBox Util (%) |
GPU Power Util (W) |
Package Power (W) |
Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| yolo-v8s | INT8 | GPU.0 | 71.34 | 55.99 | MTL 165H (32G Mem) | 116.1 | 0.66 | 1.61 | 15.45 | 1.72 | 0.63 | 95.04 | 0.0 | 4.87 | 15.79 | No Error |
| Model | Precision | Device | Throughput (fps) |
Latency (ms) |
Reference Platform | Reference Throughput (fps) | Reference GPU Freq (GHz) | CPU Avg Freq (GHz) |
CPU Util (norm) (%) |
Memory Util (%) |
GPU Freq (GHz) |
GPU EU Util (%) |
GPU VDBox Util (%) |
GPU Power Util (W) |
Package Power (W) |
Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| clip-vit-base-patch16 | INT8 | GPU.0 | 9.64 | 414.46 | MTL 165H (32G Mem) | 0 | 0 | 1.35 | 11.9 | 2.44 | 0.77 | 83.8 | 0.0 | 5.93 | 15.11 | No Error |
This test runs a memory benchmark based on STREAM to ensure sufficient memory bandwidth for media processing.
| memory_benchmark_runner_test | Function | Best Rate MB/s | Avg time | Min time | Max time | Result |
|---|---|---|---|---|---|---|
| Memory_Benchmark_Test | Copy | 34313.9 | 0.056199 | 0.055954 | 0.056677 | No Error |
| Memory_Benchmark_Test | Scale | 26711.1 | 0.074053 | 0.071880 | 0.075055 | No Error |
| Memory_Benchmark_Test | Add | 29723.2 | 0.099898 | 0.096894 | 0.101036 | No Error |
| Memory_Benchmark_Test | Triad | 29001.2 | 0.100625 | 0.099306 | 0.101643 | No Error |
Media Encode and Decode Performance tests.
| Media Performance Benchmark | Device Used | Codec | Bitrate | Resolution | Number of Monitors | Max Channels | Reference Platform | Reference Value | AVG CPU Freq(MHz) | AVG CPU Util(%) | AVG Memory Util(%) | AVG GPU Freq(MHz) | AVG GPU EU(RCS) Util(%) | AVG GPU VDBox(VCS) Util(%) | Avg SoC Power (W) | AVG GPU power(W) | Duration(s) | Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Media Encode Benchmark | iGPU | h264 | 4Mbps | 1080p@30 | N/A | 22 | MTL 165H (32G Mem) | 25 | 2512.83 | 132.48 | 0.90 | 409.07 | 0.00 | 97.03 | 14.93 | 0.13 | 560.65 | No Error |
| Media Encode Benchmark | iGPU | h264 | 16Mbps | 4K@30 | N/A | 5 | MTL 165H (32G Mem) | 5 | 2286.70 | 23.19 | 0.30 | 582.22 | 0.00 | 99.65 | 14.99 | 0.14 | 372.84 | No Error |
| Media Encode Benchmark | iGPU | h265 | 2Mbps | 1080p@30 | N/A | 15 | MTL 165H (32G Mem) | 18 | 1967.28 | 66.91 | 2.20 | 415.10 | 0.00 | 0.00 | 15.07 | 0.14 | 424.28 | No Error |
| Media Encode Benchmark | iGPU | h265 | 8Mbps | 4K@30 | N/A | 3 | MTL 165H (32G Mem) | 3 | 2159.35 | 14.60 | 1.50 | 434.31 | 0.00 | 0.00 | 14.88 | 0.17 | 313.62 | No Error |
Media Encode and Decode Performance tests.
Media Encode and Decode Performance tests.
| Media Performance Benchmark | Device Used | Input Codec | Input Bitrate | Input Resolution | Number of Monitors | Max Channels | Reference Platform | Reference Value | AVG CPU Freq(MHz) | AVG CPU Util(%) | AVG Memory Util(%) | AVG GPU Freq(MHz) | AVG GPU EU(RCS) Util(%) | AVG GPU VDBox(VCS) Util(%) | Avg SoC Power (W) | AVG GPU power(W) | Duration(s) | Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Media Decode Benchmark | iGPU | h264 | 4Mbps | 1080p@30 | N/A | 56 | MTL 165H (32G Mem) | 77 | 2521.49 | 137.45 | 0.69 | 474.15 | 0.00 | 0.00 | 14.77 | 0.15 | 803.47 | No Error |
| Media Decode Benchmark | iGPU | h264 | 16Mbps | 4K@30 | N/A | 16 | MTL 165H (32G Mem) | 23 | 2401.92 | 18.83 | 0.30 | 590.84 | 0.00 | 0.00 | 13.45 | 0.16 | 568.25 | No Error |
| Media Decode Benchmark | iGPU | h265 | 2Mbps | 1080p@30 | N/A | 70 | MTL 165H (32G Mem) | 107 | 2022.62 | 238.51 | 0.78 | 429.67 | 0.00 | 0.00 | 14.96 | 0.16 | 853.43 | No Error |
| Media Decode Benchmark | iGPU | h265 | 8Mbps | 4K@30 | N/A | 25 | MTL 165H (32G Mem) | 28 | 2640.05 | 27.82 | 0.40 | 590.00 | 0.00 | 0.00 | 15.08 | 0.17 | 555.36 | No Error |
| Media Decode + 6*6 Compose Benchmark to 1080p@30FPS | iGPU | h264 | 4Mbps | 1080p@30 | 1 | 27 | MTL 165H (32G Mem) | 17 | 1383.83 | 361.84 | 0.70 | 645.22 | 11.13 | 0.00 | 15.00 | 0.44 | 1522.61 | No Error |
| Media Decode + 6*6 Compose Benchmark to 4K@30FPS | iGPU | h264 | 16Mbps | 4K@30 | 1 | 8 | MTL 165H (32G Mem) | 4 | 2852.17 | 30.48 | 0.39 | 677.56 | 5.02 | 0.00 | 14.63 | 0.33 | 631.27 | No Error |
| Media Decode + 6*6 Compose Benchmark to 1080p@30FPS | iGPU | h265 | 2Mbps | 1080p@30 | 1 | 24 | MTL 165H (32G Mem) | 17 | 2594.19 | 162.72 | 0.69 | 559.60 | 8.91 | 0.00 | 15.02 | 0.38 | 1211.51 | No Error |
| Media Decode + 6*6 Compose Benchmark to 4K@30FPS | iGPU | h265 | 8Mbps | 4K@30 | 1 | 8 | MTL 165H (32G Mem) | 4 | 2930.83 | 30.85 | 0.30 | 682.62 | 5.24 | 0.00 | 14.97 | 0.33 | 637.24 | No Error |
Media Encode and Decode Performance tests.
media_performance_benchmark.tar.gz
This test uses the OpenVINO benchmark app to exercise the GPU for an extended period and while tracking its frequency.
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Storage: 1080p@30 H.264 4Mbps; Output: VideoWall, 4K@30 H264 16Mbps; Benchmark metric: Number of video channels with inference.
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Storage: 1080p@30 H.264 4Mbps; Output: VideoWall, 4K@30 H264 16Mbps; Benchmark metric: Number of video channels with inference.
| Pipeline_Test | Device Used | Input Codec | Input Resolution | Input Channels | Model | Compose | Number of Monitors | AI Channels | Reference Platform | Reference Value | AVG CPU Freq(MHz) | AVG CPU Util(%) | AVG Memory Util(%) | AVG GPU Freq(MHz) | AVG GPU EU(RCS) Util(%) | AVG GPU VDBox(VCS) Util(%) | AVG package power(W) | AVG GPU power(W) | Duration(s) | Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Smart NVR Pipeline | iGPU | H264 (4Mbps) | 1080p@20 | 25 | yolov5s-416 | 5x5 | 1 | 9 | MTL 165H (32G Mem) | 23 | 1929.46 | 333.28 | 2.67 | 645.81 | 6.91 | 45.19 | 14.67 | 1.83 | 912.19 | No Error |
| Smart NVR Pipeline | iGPU | H264 (4Mbps) | 1080p@20 | 25 | yolov5m-416 | 5x5 | 1 | 4 | MTL 165H (32G Mem) | 12 | 1932.10 | 316.09 | 2.53 | 750.41 | 8.72 | 55.89 | 15.05 | 2.30 | 793.51 | No Error |
| Smart NVR Pipeline | iGPU | H264 (4Mbps) | 1080p@20 | 25 | yolov5m-416+efficientnet-b0 | 5x5 | 1 | 1 | MTL 165H (32G Mem) | 3 | 1949.45 | 227.63 | 2.55 | 577.62 | 10.69 | 21.06 | 15.02 | 0.95 | 409.38 | No Error |
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Storage: 1080p@30 H.264 4Mbps; Output: VideoWall, 4K@30 H264 16Mbps; Benchmark metric: Number of video channels with inference.
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Output: VideoWall, 4K@30 H264 16Mbps; Benchmark metric: Number of video channels.
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Output: VideoWall, 4K@30 H264 16Mbps; Benchmark metric: Number of video channels.
| Pipeline_Test | Device Used | Input Codec | Input Resolution | Input Channels | Model | Compose | Number of Monitors | AI Channels | Reference Platform | Reference Value | AVG CPU Freq(MHz) | AVG CPU Util(%) | AVG Memory Util(%) | AVG GPU Freq(MHz) | AVG GPU EU(RCS) Util(%) | AVG GPU VDBox(VCS) Util(%) | AVG package power(W) | AVG GPU power(W) | Duration(s) | Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Headed Visual AI Pipeline | iGPU | H264 (4Mbps) | 1080p@30 | 9 | yolov5s-416 | 4x4 | 1 | 9 | MTL 165H (32G Mem) | 16 | 1810.80 | 264.12 | 2.05 | 614.20 | 7.58 | 0.00 | 14.03 | 2.03 | 978.95 | No Error |
| Headed Visual AI Pipeline | iGPU | H264 (4Mbps) | 1080p@30 | 5 | yolov5m-416 | 4x4 | 1 | 5 | MTL 165H (32G Mem) | 14 | 1906.50 | 249.09 | 2.02 | 734.63 | 6.36 | 0.00 | 14.93 | 3.31 | 705.89 | No Error |
| Headed Visual AI Pipeline | iGPU | H264 (4Mbps) | 1080p@30 | 1 | yolov5m-416+efficientnet-b0 | 4x4 | 1 | 1 | MTL 165H (32G Mem) | 4 | 2605.62 | 62.64 | 1.57 | 520.39 | 4.81 | 0.00 | 15.05 | 1.53 | 302.54 | No Error |
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Output: VideoWall, 4K@30 H264 16Mbps; Benchmark metric: Number of video channels.
headed_visual_ai_proxy_pipeline_runner.tar.gz
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Storage: 1080p@30 H.265 2Mbps; Output: 1080p@30 H.265 2Mbps; Benchmark metric: Number of video channels.
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Storage: 1080p@30 H.265 2Mbps; Output: 1080p@30 H.265 2Mbps; Benchmark metric: Number of video channels.
| Pipeline_Test | Device Used | Input Codec | Input Resolution | Input Channels | Model | Compose | Number of Monitors | AI Channels | Reference Platform | Reference Value | AVG CPU Freq(MHz) | AVG CPU Util(%) | AVG Memory Util(%) | AVG GPU Freq(MHz) | AVG GPU EU(RCS) Util(%) | AVG GPU VDBox(VCS) Util(%) | AVG package power(W) | AVG GPU power(W) | Duration(s) | Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AI VSaaS Gateway Pipeline | iGPU | H264 (4Mbps) | 1080p@30 | 6 | yolov5s-416 | N/A | N/A | 6 | MTL 165H (32G Mem) | 27 | 1598.85 | 219.90 | 1.48 | 676.88 | 0.00 | 0.00 | 14.96 | 2.39 | 591.63 | No Error |
| AI VSaaS Gateway Pipeline | iGPU | H264 (4Mbps) | 1080p@30 | 6 | yolov5m-416 | N/A | N/A | 6 | MTL 165H (32G Mem) | 16 | 1731.08 | 215.12 | 1.60 | 665.98 | 0.00 | 0.00 | 15.07 | 3.33 | 692.00 | No Error |
| AI VSaaS Gateway Pipeline | iGPU | H264 (4Mbps) | 1080p@30 | 1 | yolov5m-416+efficientnet-b0 | N/A | N/A | 1 | MTL 165H (32G Mem) | 4 | 2325.53 | 50.57 | 1.39 | 336.65 | 0.00 | 0.00 | 15.06 | 1.22 | 297.40 | No Error |
Benchmark Specification: Input: 1080p@30 H.264 4Mbps (video with 10 objects); Storage: 1080p@30 H.265 2Mbps; Output: 1080p@30 H.265 2Mbps; Benchmark metric: Number of video channels.
ai_vsaas_proxy_pipeline_runner.tar.gz
License Plate Recognition(LPR) Pipeline Benchmark
License Plate Recognition(LPR) Pipeline Benchmark
| Pipeline Test | Model | Mode | Devices Used | AI Channels | Avg FPS | Reference Platform | Reference Value | AVG CPU Freq(MHz) | AVG CPU Util(%) | AVG Memory Util(%) | AVG GPU Freq(MHz) | AVG GPU EU(RCS) Util(%) | AVG GPU VDBox(VCS) Util(%) | AVG package power(W) | AVG GPU power(W) | Duration(s) | Result |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LPR Pipeline | yolov8_license_plate_detector+ch_PP-OCRv4_rec_infer | Mode 2 | iGPU(Dec)/iGPU(Det)/iGPU(Cls) | 7 | 32.2 | MTL 165H (32G Mem) | 14 | 1848.39 | 234.75 | 2.71 | 477.26 | 0.00 | 0.00 | 14.09 | 2.66 | 397.20 | No Error |
| LPR Pipeline | yolov8_license_plate_detector+ch_PP-OCRv4_rec_infer | Mode 3 | iGPU(Dec)/iGPU(Det)/NPU(Cls) | 8 | 30.32 | MTL 165H (32G Mem) | 14 | 1864.20 | 115.16 | 1.50 | 714.42 | 0.00 | 0.00 | 15.28 | 3.86 | 342.71 | No Error |
| LPR Pipeline | yolov8_license_plate_detector+ch_PP-OCRv4_rec_infer | Mode 4 | iGPU(Dec)/NPU(Det)/NPU(Cls) | 5 | 32.88 | MTL 165H (32G Mem) | 14 | 2409.74 | 58.68 | 1.20 | 108.43 | 0.00 | 0.00 | 13.80 | 0.17 | 319.65 | No Error |
License Plate Recognition(LPR) Pipeline Benchmark